
Erasure Coded Sharding
Bribery-resistant sharding for scalable blockchains

Jessica Taylor (jessi.liu.taylor@gmail.com)

gigascaling.net

mailto:jessi.liu.taylor@gmail.com
http://gigascaling.net

Regular blockchains (Bitcoin, Ethereum)

● “A → B” means “A includes hash code of B”
● Proof-of-work or proof-of-stake (details omitted)
● All full nodes download and verify every transaction
● Problem: this limits how many transactions per second there can be

Block 1
Block 2
Tx1: …
Tx2: …

Block 3
Tx1: …
Tx2: …

Sharded blockchain

● Regular full nodes only download top chain
● Shard-level verifiers download data for a given shard
● Each shard is responsible for a subset of accounts
● Split transactions into “send” and “receive” (like actor model)
● Problem: how do regular full nodes know shard-level data is valid?

Block 1

Shard 1
Tx1: …
Tx2: …

Block 2 Block 3

Shard 2
Tx3: …
Tx4: …

Shard 1
Tx1: …
Tx2: …

Shard 2
Tx3: …
Tx4: …

Shard 1
Tx1: …
Tx2: …

Shard 2
Tx3: …
Tx4: …

Random validator pools

● Call together a validator committee by selecting ~1000 random stakers
● If >⅔ of stakers are honest, with high probability >½ of the committee is honest
● Regular full nodes only download signatures, not transactions
● Can be iterated multiple levels (Inductive Consensus Tree Protocol, ictp.io)
● Problem: bribery

Block 1

Shard 1
Tx1: …
Tx2: …
Sigs: …

Block 2 Block 3

Shard 2
Tx3: …
Tx4: …
Sigs: …

Shard 1
Tx1: …
Tx2: …
Sigs: …

Shard 2
Tx3: …
Tx4: …
Sigs: …

Shard 1
Tx1: …
Tx2: …
Sigs: …

Shard 2
Tx3: …
Tx4: …
Sigs: …

http://ictp.io

3 types of validators

● 😇 Altruistic: Always honest
● 😈 Malicious: Trying to sabotage the system, even at cost to self
● 🤑 Greedy: Honest unless bribed sufficiently
● If >⅓ of stakers are malicious or greedy, committees are likely to be bribable.
● Only one committee must be bribed to mint fake currency; bribery is cheap.

zk-SNARK verification

● Each valid shard contains a zero-knowledge proof of its validity
● Full nodes download and check SNARKs, not transactions
● Can be iterated multiple levels (and compressed) with recursive SNARKs
● Problem: data availability attacks (reveal SNARK, withhold data)

Block 1

Shard 1
Tx1: …
Tx2: …
SNARK: …

Block 2 Block 3

Shard 2
Tx3: …
Tx4: …
SNARK: …

Shard 1
Tx1: …
Tx2: …
SNARK: …

Shard 2
Tx3: …
Tx4: …
SNARK: …

Shard 1
Tx1: …
Tx2: …
SNARK: …

Shard 2
Tx3: …
Tx4: …
SNARK: …

Data availability attacks

● Shard-level validators may provide a SNARK showing the shard is valid, but
withhold the shard data (incl. transactions) from others

● This prevents individual accounts from proving account states or unspent
transactions, which prevents the account’s funds from being accessible

● Can we use random validator committees to mitigate this? They can be
bribed, knocking out lots of account data

● Solution concept: Can we force a large percentage of committees to be
knocked out to make any shard’s data unavailable?

● (inspired by PolyShard, algorithm details differ; PolyShard requires all
validators to download all new blocks)

https://arxiv.org/abs/1809.10361

Erasure code

● 🟦🟦🟦🟦🟦🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩
● k blue squares = original data chunks (each the same # bytes), 5 in this case
● Redundancy factor α, 3 in this case
● k(α - 1) green squares = data augmentation
● Can recover k blue squares given any k blue or green squares!
● Reed-Solomon code works by polynomial interpolation: interpret blue squares as

polynomial coefficients in a finite field, get green squares by evaluating polynomial
at more points, recover blue squares by fitting a polynomial

● Encoding is ~O(αk), decoding is ~O(α^2k^2) for Reed Solomon codes
● Encoding is ~O(αk), decoding is ~O(αk) for Raptor codes (need ~10 extra chunks)
● Reed-Solomon parallelizes well, tractable to do in a SNARK

Erasure coding shard data

● Shard 1 data: 🟦🟦🟦🟦🟦🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩
● Shard 2 data: 🟦🟦🟦🟦🟦🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩
● Etc, for x shards
● The data consists of kα chunks for each shard (xkα total chunks)
● Split into kα columns; we can recover all data from k full columns
● Split stakers into kα equal-sized pools, each responsible for storing 1 column
● If enough honest stakers store all their data, we can recover everything!
● Storage per staker = x chunks (1/k of original data), it scales decently
● Use SNARKs to prove that enough signatures exist that a significant fraction

of stakers would have to lie about their storage for data to be unrecoverable
● In case some chunks are dropped, use a different SNARK for each shard

Reducing storage by erasure coding each column

● Shard 1 data: 🟦🟦🟦🟦🟦🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩
● Shard 2 data: 🟦🟦🟦🟦🟦🟩🟩🟩🟩🟩🟩🟩🟩🟩🟩
● Redundant 1: 🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨
● Redundant 2: 🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨🟨
● Secondary redundancy factor β (2 in this case)
● We can recover a column with x of βx chunks
● We can recover everything with (α + β - 1)xk of αβxk chunks
● Split stakers into αβxk equal-sized pools, each responsible for storing 1 chunk
● If enough honest stakers store their chunk, we can recover everything!
● Storage per staker = 1 chunk (1/(xk) of original data), it scales very well

Security analysis

● Set threshold γ, proportion of chunks that must be asserted to be stored
● Proportion that must actually be stored is (α + β - 1)/(αβ)
● Secure if less than γ-(α + β - 1)/(αβ) proportion of stakers act maliciously
● Malicious includes 😈 and bribed 🤑
● Cost of bribery ≈ stake amount (easy to prove chunk unavailability & punish)
● Functional if more than γ proportion of stakers are honest most rounds
● Acting honestly includes 😇 and 🤑 (bribery won’t happen most rounds)
● E.g. γ=⅔, α=β=6 → secure if less than 36.1% of stakers act maliciously

Privacy and smart contracts

● Privacy is easy since we’re already using SNARKs
● Transaction data for a private transaction consists of account ID and hash

code of new private state (64 bytes total)
● SNARK for a shard proves SNARKs exist for each account state transaction
● 2 types of smart contracts: per-account and independent
● Per-account smart contracts modify account data, including private data
● A single account can partake in multiple per-account smart contracts
● E.g. tokens which are similarly private to the base currency
● Independent contracts are like their own account, data is public

Multi-level sharding

● 3 instead of 2 levels, reduced branching factor
● Reduces work per node
● Use 2d erasure code for each shard, 3d overall (decreases data efficiency,

increases compute efficiency of Reed Solomon encoding/decoding)

Shard 1

Tx1: …
Tx2: …

Shard 2 Shard 3

Tx3: …
Tx4: …

Tx5: …
Tx6: …

Tx7: …
Tx8: …

Tx9: …
Tx10: …

Tx11: …
Tx12: …

Block 23

